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Three-dimensional hybrid solitary waves: Transverse vortex solitons stabilized by longitudinal
parametric solitary waves

Antonio Picozzi
Laboratoire de Physique de la Matie`re Condense´e, CNRS-UMR 6622, Universite´ de Nice Sophia-Antipolis, Parc Valrose, F-06108 Nic
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~Received 2 January 2001; revised manuscript received 15 March 2001; published 28 June 2001!

We show that the parametric process in quadratic nonlinear media supports three-dimensional~3D! hybrid
solitary wave solution in which a transverse vortex solitons embedded in an infinite plane-wave background is
sustained by a longitudinal parametric solitary wave. The structure of the parametric solitary wave results from
the interplay of the quadratic nonlinearity and the temporal walk off~i.e., the velocity mismatch! between the
interacting waves. The 3D hybrid solitary wave proved to be robust with respect to modulational instability, a
feature that contrasts with previous studies on quadratic vortex solitons that revealed them to be always
modulationally unstable. We show that the mechanism of stabilization of the vortex background lies on the
temporal walkoff between the interacting waves that is able to drift the modulational instability out of the
temporally localized structure that constitutes the 3D hybrid solitary wave.
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I. INTRODUCTION

Vortices or screw phase dislocations are ubiquitous e
ties encountered in many branches of physics@1#. They con-
stitute topological phase singularities of a complex field
which the field intensity vanishes at the singular point wh
the phase changes by 2pm (m being an integer, the vorte
charge! along any closed loop around the zero intens
point. Vortices have been widely investigated in optics
several settings such as, e.g., in optical cavities or spe
fields. When an optical vortex is generated in a linear b
medium, it expands during the propagation due to the ef
of diffraction. However the expansion of the vortex core c
be compensated in a nonlinear defocusing medium owin
the nonlinearity-induced change of the refractive ind
thereby creating a stationary structure, i.e.,an optical vortex
soliton @2,3#.

Optical vortex solitons have been extensively investiga
from both the theoretical and experimental viewpoints in
bic nonlinear media where they are known as stable t
dimensional structures@2,3#. In these last few years, a con
siderable effort has been realized to generalize the op
vortex solitons toquadratic nonlinear media. The quadratic
interaction is interesting since it provides an efficient way
vortex transformation by mixing waves of different freque
cies, which has been recently investigated experiment
@4#. However, straightforward extension of the concept
vortex soliton to the case of quadratic nonlinearities fa
Indeed, it has been shown theoretically that all fini
amplitude plane waves suffer from parametric modulatio
instability @5#. As a result, no stable vortex solitons ha
been found to exist in a pure quadratic medium. Most
cently, it has been shown that a weak defocusing cubic n
linearity can eliminate the parametric modulational instab
ity of plane waves, leading to a stabilization of the vort
soliton @6,7#. Another mechanism of stabilization has be
recently proposed: In the situation where the background
the vortex soliton ‘‘is not too large’’@8#, a transverse spatial
1063-651X/2001/64~1!/016614~9!/$20.00 64 0166
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walkoff can drift the modulational instability of the vorte
background out of the beam itself. This mechanism of s
quenching of the parametric modulational instability allow
for the observation of the quadratic vortex soliton when it
embedded in afinite beam background@8#.

In the present paper, we address the problem of the g
eration of stable quadratic vortex solitons embedded in
infinite plane-wave background from a different point
view. The original idea, recently suggested in Ref.@8# that
the transverse spatial walk off is able to stabilize the tw
dimensional~2D! vortex soliton embedded in afinite back-
ground, may be extended to 3D in order to stabilize vor
solitons embedded in aninfinite background. This may be
achieved by considering atemporalwalkoff along the longi-
tudinal axis of propagation instead of aspatialwalkoff in the
transverse plane of the optical beam, as suggested in Ref@8#.
Indeed, it is well known that a strong temporal walkoff
responsible for the spontaneous localization of the opt
fields along the longitudinal axis of propagation. This long
tudinal localization allows for the modulational instability t
drift out of the temporally localized structure before it h
time to develop. Since the drift of the modulational instab
ity takes place along the longitudinal axis of propagatio
this mechanism of self-stabilization occurs for any transve
profile of the field envelopes, in particular, for the transve
vortex profile embedded in an infinite plane-wave bac
ground.

Beside this self-stabilization mechanism, we show th
quite remarkably, the longitudinal localization of the inte
acting fields results in the formation of aparametric solitary
wave @9#. This type of solitary wave results from an exa
balance between the parametric nonlinear process and
velocity mismatch between the interacting waves, i.e.,
temporal walk off. The parametric solitary waves have be
extensively investigated in the pure 1D case in various c
texts of nonlinear optics@10,11#, in particular, in quadratic
nonlinear media@12–14#. In the multidimensional case o
interest here, the longitudinal parametric solitary wave
coupled to the transverse vortex soliton to form a 3Dhybrid
©2001 The American Physical Society14-1
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ANTONIO PICOZZI PHYSICAL REVIEW E 64 016614
solitary wave. In this way, the proposed 3D solitary wav
generalizes the previously reported 2D hybrid solitary wa
@15# by including in the solitary wave structure the transve
vortex soliton owing to an additional transverse dimensi
The main issue lies on the robustness of the 3D hybrid s
tary wave with respect to the modulational instability of t
transverse vortex background. We show that this robustn
results from the self-stabilization mechanism that origina
in the temporal walkoff between the fields that constitute
3D hybrid solitary wave.

Both the 3D hybrid solitary wave solution and the ass
ciated process of self-stabilization of the plane-wave vor
background constitute the subject of the present article.
3D solitary wave proposed here is also relevant to the
cently reported composite vector solitons carrying a to
logical charge@16# or to spatiotemporal solitons that are
particular interest in quadratic nonlinear media where rec
experiments have been performed@17#.

II. GOVERNING EQUATIONS

We consider the usual three-wave interaction model
govern the spatiotemporal evolution of optical fields in
nonlinear quadratic crystal. The evolution of the slowly va
ing envelopesui of these fields of frequencyv i and wave
numberki obey the coupled partial differential equations

]u1

]t8
1v1

]u1

]z8
1g1u15s1u3u2* 1 ir1¹'

2 u1 , ~1a!

]u2

]t8
1v2

]u2

]z8
1g2u25s2u3u1* 1 ir2¹'

2 u2 , ~1b!

]u3

]t8
1v3

]u3

]z8
1g3u352s3u2u11 ir3¹'

2 u3 , ~1c!

where ¹'
2 5]2/]x821]2/]y82, x8 and y8 being the trans-

verse spatial coordinates. For definiteness we callu1 ,u2 ,u3
the signal, idler, and pump waves, respectively.v i are the
group velocities of the three waves along the longitudinalz8
axis andg i are their attenuation coefficients. The nonline
coefficients ares i52pdv i /l ini where ni is the refractive
index at frequencyv i and d is the effective nonlinear sus
ceptibility. The effect of diffraction is taken into account
Eqs. ~1! through the parametersh i5r iv i , wherer i51/2ki
are the diffraction coefficients.

Since our aim here is to study the influence of the tem
ral walk off on the transverse dynamics of the vortex str
ture, we will consider for the sake of simplicity that there
a walk off only between the signal and the pump-idler fiel
i.e., we assume that the pump and idler waves propagate
the same group velocityv25v3. This assumption allows u
to define a unique parameterd5(v2,32v1)/2 that represents
the amount of walk off between the interacting waves.

Owing to this assumption, we now write Eqs.~1! in the
reference frame traveling at the average group velocityv1
1v2,3)/2 of the signal and the comoving pump and id
waves, we thus define the new variablez95z82dt8. The
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e
e
.

li-

ss
s
e

-
x
e
-
-

nt

at

-

r

-
-

,
ith

choice of this particular reference frame may appear artifi
at this point, however, the reason for this choice will beco
clear later. Note that, without loss of generality, we will a
sume in the following thatv1,v2,3. For convenience, we
also write Eqs.~1! in a normalized form: the field amplitude
ui , the timet8, the damping ratesg i and the spatial coordi-
nates (x8,y8,z9) are normalized with respect to the pum
amplitudee0 at the input of the crystal and with respect
the characteristic evolution time of the parametric interact
t05(s1e0)21. The corresponding characteristic interacti
length then readsL5dt0. In dimensionless units, Eqs.~1!
then take the following form

]A1

]t
2

]A1

]z
1m1A15A3A2* 1 ik1¹'

2 A1 , ~2a!

]A2

]t
1

]A2

]z
1m2A25r 2A3A1* 1 ik2¹'

2 A2 , ~2b!

]A3

]t
1

]A3

]z
1m3A352r 3A2A11 ik3¹'

2 A3 , ~2c!

where the variables in real units are related to the dimens
less variables through the transformationui5Aie0 , t8
5tt0 , (x8,y8,z9)5(x,y,z)dt0 , g i5m i /t0. In these units,
the normalized diffraction coefficients in Eqs.~2! are k i
5v ir i /d2t0, while the normalized nonlinear susceptibility
r i5s i /s1 ( i 52,3). In the following, we will assume for
simplicity thatr 352r 252 andk5k15k252k3. As will be
discussed in Sec. V, these assumptions are consistent
realistic experimental configurations.

III. SYMMETRY CONSIDERATIONS

In a recent work we investigated Eqs.~2! in the pure
one-dimensional case (k i50) and found a family of para-
metric solitary wave solutions@13# whose typical envelopes
profilesAi are illustrated in Fig. 1. The longitudinal confine
ment of the down-converted signal and idler fields resu
from the interplay of the parametric amplification from th

FIG. 1. Typical envelopes profiles of the parametric solita
wave solution in the pure one-dimensional case. Parameters ak
50, m150.3, m250.6, m350 ~amplitudes are given in units o
e0).
4-2
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THREE-DIMENSIONAL HYBRID SOLITARY WAVES: . . . PHYSICAL REVIEW E 64 016614
continuous pump and the velocity mismatch between the
teracting waves~i.e., the temporal walkoff!. We investigate
here a 3D hybrid structure in which the longitudinal param
ric solitary wave sustains a transverse vortex soliton in
transverse plane (x,y) @k iÞ0 in Eqs.~2!#. In this respect, let
us make some preliminary remarks on the simpler prob
of the parametric amplification of a vortex structure from
plane-wave pump.

An important aspect to point out is that the plane-wa
pump can only sustain a vortex structure when the param
ric process takes place in thenondegenerate configuration.
This may be easily seen by invoking some simple symm
tries considerations. Indeed, one can easily verify that E
~2! are invariant under the transformation (A1 ,A2 ,A3)
→(A1exp@if#,A2exp@2if#,A3), wheref is an arbitrary con-
stant phase. Owing to this particular symmetry associa
with the continuous variablef, we may anticipate that the
vortex structure of the down-converted fieldsA1,2 is pre-
served when the amplification process is driven by a pla
wave pumpA35cte @1#. Conversely, when the parametr
process takes place in thedegenerateconfiguration (v1
5v2 ,A15A2), the previous continuous symmetry reduc
to the following discrete symmetry (A1 ,A3)→(2A1 ,A3)
and we may expect that the vortex structure of the sig
beamA1 is no longer preserved during the amplification pr
cess@1#.

We checked these predictions by the numerical simula
of Eqs. ~2! where we neglected for simplicity the tempor
walkoff between the interacting waves. Starting from an i
tial vortex profile @A1(r ,u,t50)5e tanh(Dr)exp(iu), (r ,u)
being the polar coordinates of the (x,y) plane,e andD being
constants#, we see in Fig. 2~a! that the nondegenerate par
metric interaction preserves the vortex structure during
parametric amplification. Conversely, in the degenerate c
figuration, the initial vortex structure rapidly evolves to
stripe pattern@Fig. 2~b!# that is subsequently preserved du
ing the amplification owing to the specific symmetry of t
degenerate parametric process. Note that the vortex-to-s
evolution is a simple consequence of the phase sensitive
ture of the degenerate interaction that results in the amp
cation of the real part of the signal amplitudeA1 to the det-
riment of its imaginary part~when the initial pump amplitude
A35cte is assumed to be real!. Then, as a result the particu
lar symmetry of the degenerate parametric interaction p

FIG. 2. Typical evolution, after few interactions times (t54), of
the parametric amplification from a plane-wave pump of an ini
vortex profile: the nondegenerate configuration of the parame
process preserves the vortex structure~a!, whereas in the degenera
configuration, the initial vortex evolves to a stripe pattern~b!.
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vents the vortex structure to be conserved during the p
metric amplification.

IV. 3D SOLITARY WAVE GENERATION

These simple considerations on the symmetries of
parametric process indicate that the nondegenerate con
ration is essential in order to investigate a 3D hybrid solita
wave in which a transverse vortex soliton is sustained by
longitudinal parametric solitary wave. Indeed, owing to t
particular symmetry of the nondegenerate configuration,
may anticipate that the parametric growth of the vortex p
file would be preserved during the amplification and wou
form a vortex soliton if it could be stabilized through a m
tual compensation of diffraction and nonlinearity. Moreve
we may expect that the temporal walkoff, which is inhere
to the longitudinal parametric solitary wave, would perm
the modulational instability of the vortex background to dr
out of the temporally localized structure before it has time
develop. In this regard, the longitudinal parametric solita
wave would play an essential role in the mechanism of s
bilization of the plane-wave vortex background. This impo
tant aspect as regards the vortex stability will be discusse
details in the next section~Sec. V!. Before considering the
stability problem, let us discuss first the existence of the
hybrid solitary wave.

To investigate numerically the existence and spontane
formation of the 3D hybrid solitary wave, we consider th
parametric amplification of a signal field that exhibits a vo
tex structure in its transverse profile in the (x,y) plane and
that is localized along the longitudinalz axis. Since we are
looking for a solitary wave that results from the energy tra
fer from the pump to the down-converted fields, we have
neglect the loss of the pump wave. Settingm350 is indeed
the only way to keep constant the energy transfer from
pump to the signal so as to generate a stationnary field st
ture. This is a usual approximation for parametric solita
waves@11–15#. Note however that in the presence of pum
loss (m3Þ0), the parametric solitary wave still exists an
simply undergoes adiabatic reshaping during propagatio
adapt its profile to the local value of the exponentially d
creasing pump amplitude.

With this asumption, we solved Eqs.~2! numerically by
extending to three dimensions the numerical scheme outl
in Ref. @18#. We considered a cubic grid of 64364364
points, with a window size ofL516(x5@28,8#,y5
@28,8#,z5@0,16#). In this example the damping paramete
arem150.3, m250.6 and the diffraction parameter isk56
31022. As the initial condition int50, we took a plane
wave for the pumpA3(x,y,z,t50)51 and a zero field for
the idler waveA2(x,y,z,t50)50. For the signal, we con
sidered a transverse vortex profile with topological cha
m51 that is bounded along the longitudinal axisz:
A1(r ,u,z,t50)5e tanh(Dr)exp(iu)z(L2z) where e50.05
andD50.3. We solved Eqs.~2! numerically to get the evo-
lution of the fieldsAi(x,y,z,t) at any timet in the reference
frame of the signal wave defined by the variables (j5z
1t,t5t). A typical example is shown in Figs. 3 and 4 th
illustrate the time evolution of the signal and pump inten

l
ic
4-3
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ANTONIO PICOZZI PHYSICAL REVIEW E 64 016614
ties uA1,3u. Figure 3 represents the evolution of the amp
tudesuA1,3u in the planex50, which includes the line of the
vortex core where the signal field vanishesA1(x50,y
50,z,t50)50. Figure 4 represents the amplitudesuA1,3u in
the proximity of the vortex core in the planex51. Note that
the same results are obtained by plotting the signal and p
intensities in the planesy50 andy51, respectively, which
confirms that the generated three-dimensional structure
sents a circular symmetry in the transverse plane (x,y).

After a complex transient (t.40), the three interacting
waves self-organize in the form of the anticipated 3D hyb
solitary wave that is characterized by a parametric solit
wave along the longitudinalz axis and a vortex soliton in the
transverse (x,y) plane. Figure 5 shows a typical longitudin
profile of the three interacting fields in the asymptotic regi
of the hybrid solitary wave (t545). As evidenced by com
paring Figs. 5 and 1, the three envelopes self-structu

FIG. 3. 3D hybrid solitary wave generation: Evolution of th
signal ~a! and pump~b! amplitudesuA1,3u ~in the signal reference
frame, j5z1t,t5t) along the longitudinal~z! and transverse~y!
axes in the planex50. After a transient (t.40), the optical fields
self-structurate in the form of a steady structure that propag
uniformly along the longitudinalz axis. Parameters arek56
31022, m150.3, m250.6 and the window size isL516L.

FIG. 4. Same as in Fig. 3, except that the signal~a! and pump
~b! amplitudesuA1,3u are plotted in the planex51 that does not
include the vortex core located along the line (x50,y50). Param-
eters are the same as in Fig. 3, the window size isL516L.
01661
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along the longitudinal axisz in the form of the parametric
solitary wave. Conversely, in the transverse dimensions,
down-converted fields evolve after a transient to a vor
soliton whose transverse stationary profile results from
interplay of diffraction and nonlinearity. Figure 6 illustrate
two typical transverse profiles of the signal field in th
asymptotic regime of the hybrid solitary wave. As we pre
ously expected~Fig. 2!, owing to its nondegenerate configu
ration, the parametric amplification preserves the vor
structure in the transverse dimension. More precisely,
cording to the particular phase symmetry of the nondege
ate configuration, the idler vortex has a chargem521 that
is the opposite of that of the signal vortex that was impos
in the initial condition (m51). Note that the vortex back
ground of the signal and idler modes exhibits a rather co
plicate profile that is related to the envelope reshaping
duced by the parametric solitary wave along the longitudi
axisz. Indeed, as shown in Fig. 6~b!, the amplitude variation
at the edge of the vortex core is no longer monotonic
rather displays a ring shaped hump, a feature termedhalo
vortex in the context of the parametric vortex solitons@7#.

We may notice that, as expected, the pump wave does
display a vortex structure in the transverse plane (x,y) in
contrast with the signal and idler components@Fig. 7~a!#. In
this respect, the vortex solitons considered here are q
different from those considered in Ref.@7#. Here, the prop-

es

FIG. 5. Typical longitudinal profile of the 3D hybrid solitar
wave along thez axis: the amplitudesuAi u are plotted along the line
(x55,y55). Parameters are the same as in Fig. 3~amplitudes are
given in units ofe0).

FIG. 6. Typical transverse signal profiles of the 3D hybrid so
tary wave att545: the amplitudeuA1u is plotted in the planesz
56 ~a! and z57 ~b!. Parameters are the same as in Fig. 3,
window size isL516L.
4-4
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THREE-DIMENSIONAL HYBRID SOLITARY WAVES: . . . PHYSICAL REVIEW E 64 016614
erty of the transverse vortex exhibited by the signal and id
fields is closer to a topologicalphase defectas described in
the pioneering work on optical vortex structures in las
systems@19#. Indeed, in lasers, the nonlinear system
driven far from equilibrium by an external field. Therefor
the analogy between the laser vortices and the 3D hy
solitary wave reported here can be viewed as follows: T
pump wave plays the role of the external field for the sig
and idler modes, which see an incoming pump that is c
tinually maintained constant owing to the temporal walk
between the pump and the down-converted fields. In
view, we may consider the transverse vortex soliton of
down-converted fields to be sustained by the incoming pu
in the form of a topological phase defect. This analogy w
lasers systems is corroborated by the recent study on t
logical phase defects in nondegenerate optical parametric
cillators where vector-vortex phase defects, with proper
similar to that described here, have been reported@20#. In
particular, as in parametric oscillators@21#, we may notice in
Fig. 7~a! that the transverse distribution of the pump amp
tude displays a pulse sitting on a constant backgroun
feature that may be merely explained by the local frustrat
of the parametric process due to the zero value of the sig
idler amplitudes imposed by the phase defect.

To complete the description of the 3D hybrid solita
wave, we reported in Fig. 8 the three-dimensional cont
plot that illustrates the surface of equal amplitudeuA1,3u of
the signal and pump fields. Figure 8~a! represents the signa
amplitude distribution foruA1u50.8, it clearly shows that the
transverse vortex soliton is localized along the longitudinaz
axis. Along this axis, the line of the vortex core where t

FIG. 7. Typical transverse~a! and longitudinal~b! pump profiles
of the 3D hybrid solitary wave att580: the amplitudeuA3u is
plotted in the planesz57 ~a! andx50 ~b!. Parameters are the sam
as in Fig. 3, the window size isL516L.
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signal vanishes appears through a tubular shape in Fig. 8~b!,
where the isosurface is given atuA1u50.3. The double-leaf
shape that displays the signal in Fig. 8~b! merely reflects the
localization of the signal amplitude~i.e., nonmonotonous
variation! along the longitudinalz axis. Conversely, the 3D
view of the pump field@Fig. 8~c!# exhibits a single-leaf shap
because of the monotonous decreasing of the pump am
tude uA3u along thez axis ~see Fig. 5!. Indeed, owing to the
parametric process, the plane-wave pump transfers its en
in the whole 3D space except in the proximity of the line
the vortex core where the down-converted fields are co
pelled to remain small, which prevents the depletion of
pump. This results in the formation of a tubular shape alo
the line of the vortex core in the 3D view of the pump fie
@Fig. 8~c!#. Longitudinal and transverse cross sections of
three-dimensional view of the pump field are shown in Fi
7~a! and 7~b!.

Let us finally remark that the hybrid solitary wave do
not propagate with the signal group velocityv1. Indeed, if
this was the case, the hybrid solitary wave would not mo
in the signal reference frame and the numerical simulat
would evidence a stationary structure at any time. C
versely, Fig. 3 illustrates a uniform drift of the solitary wav
along the axisj ~i.e., in the signal reference frame!, which
means that the hybrid solitary wave propagates with a p
ticular selected velocityVz* . This is not a surprising resul
since we have previously shown in the 1D and 2D cases
the parametric solitary wave is subject to a mechanism
velocity selection that results from the interplay of the grou
velocity difference between the interacting waves. In the
case of interest here, we may easily determine the sele
velocity Vz* in a way akin to the 2D case@15#. Indeed, we
may notice that in the regions far from the vortex core, t
transverse profile of the hybrid solitary wave displays a
wavefront where the diffraction effect plays no role. Accor
ingly, the longitudinal profile of the hybrid solitary wav
takes the same shape as in the pure one-dimensional ca
evidenced by the comparison of Figs. 5 and 1. Conside
the fact that the 3D hybrid solitary wave propagates with
distortion, its velocityVz* turns to be the velocity of the pur
one-dimensional parametric solitary wave. This velocity m
be determined analytically following the Kolmogorov
Petrovskii-Piskunov analysis@22#, which has been success
fully applied to Brillouin @11# and parametric solitary wave
@13,14#. In the particular case of the nondegenerate param
d
FIG. 8. Three-dimensonal view of the hybri
solitary wave att545: Surface of equal ampli-
tudes of the signal@~a! uA1u50.8, ~b! uA1u50.3#
and the pump@~c! uA3u50.4# amplitude distribu-
tions. Parameters are the same as in Fig. 3.
4-5
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ANTONIO PICOZZI PHYSICAL REVIEW E 64 016614
ric configuration, this velocity has been determined in R
@13#, and reads

Vz* 5
m2

22m1
214A12m1m2

41~m12m2!2
. ~3!

From this expression of the velocity one can easily ver
that 21,Vz* ,1. This means that the velocityv* of the
hybrid solitary wave in the laboratory reference frame and
real physical units, is bounded by the signal velocityv1 and
the pump-idler velocityv2,3, i.e., v1,v* ,v2,3. As for the
2D hybrid solitary wave, the expression~2! of the velocity
Vz* proved to be in excellent agreement with the velocity
the 3D hybrid solitary wave calculated through numeri
simulations.

V. STABILITY OF THE VORTEX STRUCTURE

Let us now discuss the important aspect regarding
stability of the transverse vortex structure of the hybrid so
tary wave. The stability of the vortex background is close
related to the stability of plane-wave amplitudes that w
shown to be always modulationally unstable in quadra
nonlinear media@5–8#. This aspect contrasts with the 3
hybrid solitary wave reported above whose transverse vo
background was revealed to be modulationally stable.
deed, we have been able to pursue the numerical integra
reported in Figs. 3–8 over very long characteristic times
interaction (t5200) and we could not identify any growin
modes that would be responsible for the onset of the mo
lational instability.

1. Influence of the temporal walkoffd

The mechanism responsible for the stabilization of
vortex background originates in the temporal walkoff b
tween the interacting waves. Owing to the temporal walko
the down-converted fields become localized along the lon
tudinal z axis in the form of the parametric solitary wav
~Fig. 5!. This suggets that, in the presence of a strong te
poral walkoff, the comoving pump and idler amplitudes i
teract with the localized signal over a very short time, wh
prevent the onset of modulational instability. Inversely, t
reasoning also indicates that, as the temporal walkoffd de-
creases, the overlapping of the three fields in the locali
structure takes place over a larger time, which would all
for the development of the modulational instability in th
vortex background. We may then expect to recover the u
modulational instability of the vortex background for sm
values of the walkoff parameterd, in concordance with the
previous studies on parametric vortex solitons@5–8#.

This prediction may be easily verified by direct numeric
simulation of Eqs.~2!. Indeed, owing to the normalizatio
adopted in Eqs.~2!, the parametersk i5v ir is1e0 /d2 simply
measure the relative weight of two antagonist effects as
gards the stability of the vortex background. On the o
hand, the diffraction parameterr i and the pump amplitudee0
would favor the development of the modulational instabili
and on the other hand, the walkoff parameterd, inversely,
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would quench the modulational instability. We may then e
pect that, as the parameterk increases, the 3D hybrid solitar
wave reported in Figs. 3–8 would become modulationa
unstable. We checked this prediction by solving Eqs.~2!
numerically, starting from the same initial condition and f
the same parameters as in Figs. 3–8, except that we
creased the value of the parameterk and added a perturba
tive noise on the initial condition in order to accelerate t
development of the modulational instability. A typical resu
is illustrated in Fig. 9 that represents a transverse vor
profile of the signal amplitudeuA1u for k51.231021 at time
t535. As expected, the signal field displays the typic
modulated pattern in the profile of the vortex backgrou
that characterizes the development of the modulational in
bility. Interestingly, the emergence of the modulational ins
bility proved to be very abrupt with respect to variations
the parameterk. For the particular values of the dampin
parametersm150.3,m250.6 considered in Figs. 3–8, we ob
served the onset of the modulational instability for values
k greater than the critical valuekc.1.0531021. The exis-
tence of a critical value of the parameterk for the onset of
the modulational instability clearly shows the essential r
of the temporal walkoff on the stabilization of the vorte
soliton embedded in an infinite plane-wave backgrou
Note that, for the sake of simplicity, we restricted our stu
to the particular case where the pump and idler group vel
ties are matched (v25v3). However, since the mechanism o
stabilization described here originates in the tempo
walkoff between the interacting waves, it is also expected
occur in the general case where the three velocities invol
in the interaction are different.

It is worth noting that the modulational instability that
discussed here does not occur from plane-wave nonlin
eigenmodes, as in the previous studies of modulational in
bility in quadratic nonlinear media@5#. The modulational in-
stability of the hybrid solitary wave rather occurs from th
specific envelope profile imposed by the parametric solit
wave along the longitudinalz axis. In this respect, the trans
verse modulational instability encountered here is of

FIG. 9. Instability of the transverse vortex background of the
hybrid solitary wave: Transverse signal profile att535 for a value
of k51.231021 that is greater than the critical valuekc.1.05
31021. Other parameters are the same as in Fig. 3.
4-6
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same nature as that reported in Ref.@23# where the longitu-
dinal profile of the interacting fields is not uniform, bu
rather displays a periodic pattern associated with the peri
energy conversion and back conversion that characterize
quadratic nonlinear interaction. Moreover, in the case of
3D hybrid solitary wave, the fields interact in the presence
the temporal walkoff, which again considerably intricate t
study of transverse modulational instability@24#.

Also note that the development of the transverse mod
tional instability has not been observed in the previous st
of the 2D hybrid solitary wave because in that work w
considered the backward configuration of the parametric p
cess@15#. Owing to the large temporal walkoffd that is
related to the backward interaction, the parameterk is com-
pelled to remain small, which ensures the stability of t
backward 2D hybrid solitary wave. However, due to t
technical difficulties encountered in achieving the quasiph
matching in the backward configuration, it would be mo
convenient to discuss the experimental conditions requ
for the observation of the hybrid solitary wave in the usu
forward configuration of the parametric process. One m
generally expect the hybrid solitary wave to be unstable
the forward configuration because of the typical small val
of the temporal walkoffd available in this configuration
However, let us note that there exist particular experime
conditions that may considerably increase the walkoff
rameterd in the forward configuration. As an example, w
may consider the configuration of the parametric interact
in which the pump and idler modes are ordinarily polariz
while the signal mode is extraordinarily polarized~i.e., type
II configuration!. In this way, one takes advantage of crys
birefringence in order to increase the temporal walkoff b
tween the signal and the pump-idler waves. Moreover,
avoid the influence of spatial walkoff that has not been
cluded in Eqs.~2!, we assume that the crystal operates in
noncritical phase-matching configuration. Under these co
tions, we may consider a periodically poled LiNbO3 crystal
that is quasiphase matched for the following wavelengths
the three modesl152.35 mm, l252.9 mm, l351.3 mm.
For these particular wavelengths, the required periodl of the
periodically poled LiNbO3 crystal is in the rangel
.27 mm. Using the dispersion relations~Sellmeier equa-
tions! of the LiNbO3 crystal @25# one gets the signal grou
velocity v151.323108m/s, as well as the pump and idle
group velocities that turn out to be almost identicalv2.v3
51.373108m/s. With these velocities, the respecti
walkoff parameter isd52.53106 m/s and the numerica
simulation reported in Figs. 3 –8would correspond to an
put pump intensity of I 5200 MW/cm2 ~i.e., e0
532 MV/m) for an effective nonlinear susceptibilityd
55 pm/V. According to this numerical simulation, the 3
hybrid solitary wave is stable and, in view of the realis
experimental data given above, it would be observable in
usual forward configuration of the parametric interacti
with currently available technology and nonlinear optic
crytals. Note that we considered the particular case of
LiNbO3 crystal to give a specific realistic example, howev
we may expect that other nonlinear optical crystals wo
also be suitable provided that one may exploit their birefr
01661
ic
the
e
f

a-
y

o-

e

se

d
l
y
n
s

al
-

n

l
-
o
-
e
i-

f

-

e

l
e
,
d
-

gence in order to take advantage of a strong temporal w
off to ensure the stability of the hybrid solitary wave.

2. Influence of the selected velocity Vz*

Our numerical simulations reveal that the critical value
the parameterkc , above which the hybrid solitary wave be
comes unstable, is not a constant value but rather depend
the damping parametersm1,2 of the down-converted fields
Although this result may be surprising at the first sight,
may be interpreted by the fact that the damping parame
m1,2 affect the velocity of the hybrid solitary waveVz* @Eq.
~3!#, which in turn affects its stability.

The influence of the selected velocityVz* on the stability
of the vortex structure may be merely explained as follow
When the hybrid solitary wave propagates with a veloc
Vz* that is closer to that of the signal mode, then the tim
spent by a given point of the signal amplitude to wa
through the localized structure may be large enough to p
mit the modulational instability to develop. Converse
when the signal wave rapidly walks away from the localiz
structure, then the time required for the development of
modulational instability becomes very short, which may p
vent the onset of the instability. In other terms, owing to t
advection between the modulationally unstable signal fi
and the localized structure, the modulational instability
drifted out of the localized structure before it has time
develop.

Clearly, the same reasoning also holds when one con
ers the advection between the hybrid solitary wave and
comoving pump and idler waves. Since the solitary wa
velocity v* is bounded by the signal velocityv1 and the
pump-idler velocityv2,3, we may expect that the hybrid sol
tary wave would be more robust against modulational ins
bility whenever it propagates with the average velocity (v1
1v2,3)/2, i.e., with the velocity that minimizes the effectiv
interaction time during which the three fields overlap in t
temporally localized structure. We checked this predict
by performing extensive numerical simulations of Eqs.~2!.
Owing to Eq.~3!, we changed the velocityVz* by varying the
damping parametersm1,2, and, for each realization we com
puted the critical value of the parameterkc above which the
hybrid solitary wave becomes unstable. As expected,
found that the critical value of the parameterkc increases as
the velocityVz* of the hybrid solitary wave approaches ze
@i.e., asv* approaches (v11v2,3)/2#. According to Eq.~3!,
we haveVz* 50 when the damping parametersm1,2 are cho-
sen such thatm11m252. For this particular case we foun
the critical value of the parameterkc.331021, which is
three times the value found in the previous case reporte
Figs. 3–8, where the velocityVz* of the hybrid solitary wave
was closer to the group velocity of the signal wave (Vz*
50.995). This numerical study confirms the relevant infl
ence of the advection between the hybrid solitary wave
the modulationally unstable field in the mechanism of sta
lization of the plane-wave vortex background.

Let us finally mention an analogy between this mech
nism of stabilization of a localized structure and a simi
mechanism that has been pointed out in the context of sti
4-7
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lated Raman scattering in optical fibers@26#. In that case, the
superluminous velocity of the solitary wave is able to wa
away from an ‘‘inertial instability’’ in a way akin to the 3D
hybrid solitary wave, reported here, able to walk away fro
the modulationally unstable field.

VI. CONCLUSION

In summary, we showed that the three-wave mixing p
cess in quadratic nonlinear media supports 3D hybrid s
tary wave solutions in which a transverse vortex soliton
sustained by a longitudinal parametric solitary wave. By
voking simple symmetry considerations, we showed t
such a three-dimensional structure can only be sustaine
the nondegenerate configuration of the parametric inte
tion. In contrast to quadratic vortex solitons that were sho
to be always modulationally unstable, the 3D hybrid solita
wave proved to be robust with respect to modulational ins
bility. Our numerical analysis reveals that the process of
bilization of the vortex background lies on two mechanism
On the one hand, the temporal walkoff between the inter
ing waves leads to a localization of the down-conver
fields, which in this way limits the effective interaction tim
during which the instability may develop. On the other ha
,
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owing to its selected velocityVz* , the localized structure is
able to walk away from the modulationally unstables field

We presented the 3D hybrid solitary wave in the partic
lar context of nonlinear optics because quadratic nonlin
optical crystals constitute ideal test beds for the experime
verification of our predictions. However, the proposed 3
hybrid solitary wave as well as the associated mechanism
self-stabilization are quite general results that may be
tended to other physical parametric processes encounter
such diverse fields as hydrodynamics, acoustics, or pla
physics@9#. More recently, it has also been pointed out th
the parametric processes play an important role in pat
forming systems subject to a temporal forcing@27# or
coupled molecular and atomic Bose-Einstein condens
@28#. In this view, the experimental observation of the 3
solitary wave would be relevant to many branches of non
ear physics owing to the universality of the resonant wa
mixing process.
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